Chapter 11

The Retrograde

The withdrawal should be thought of as an offensive instrument, and exercises framed to teach how the enemy can be lured into a trap, closed by a counter-stroke or a devastating circle of fire.

B.H. Liddell Hart, 1944

The *retrograde* is a type of defensive operation that involves organized movement away from the enemy (FM 3-0). The enemy may force these operations or a commander may execute them voluntarily. In either case, the higher commander of the force executing the operation must approve the retrograde. Retrograde operations are transitional operations; they are not considered in isolation.

- 11-1. The commander executes retrogrades to-
 - Disengage from operations.
 - Gain time without fighting a decisive engagement.
 - Resist, exhaust, and damage an enemy in situations that do not favor a
 defense.
 - Draw the enemy into an unfavorable situation or extend his lines of communication (LOCs).
 - Preserve the force or avoid combat under undesirable conditions, such as continuing an operation that no longer promises success.
 - Reposition forces to more favorable locations or conform to movements of other friendly troops.
 - · Position the force for use elsewhere in other missions.
 - Simplify the logistic sustainment of the force by shortening LOCs.
 - Position the force where it can safely conduct reconstitution.
 - Adjust the defensive scheme, such as secure more favorable terrain.

CONTENTS			
Historical Example11-2	Planning a Withdrawal11-21		
Delay11-3			
Organization of Forces11-4	Executing a Withdrawal11-23		
Control Measures11-5	Terminating a Withdrawal11-24		
Plan11-7	Retirement11-24		
Prepare11-14	Organization of Forces11-25		
Execute11-15	Control Measures11-26		
Termination of a Delay11-18	Combat Service Support11-26		
Withdrawal11-18	Unique Retrograde Situations11-28		
Organization of Forces11-19	Denial Operations11-28		
Control Measures11-20	Stay-Behind Operations11-30		

- · Deceive the enemy.
- 11-2. The three forms of retrograde are delay, withdrawal, and retirement. In each form, a force moves to the rear, using combinations of combat formations and marches. (Chapter 3 discusses combat formations; Chapter 14 discusses troop movement.) The commander may use all three forms singularly or in combination with other types and forms of offensive or defensive operations.
- 11-3. Retrogrades can negatively affect the participating soldiers' attitude more than any other type of operation because they may view the retrograde as a defeat. A commander must not allow retrograde operations to reduce or destroy unit morale. Leaders must maintain unit aggressiveness. By planning and efficiently executing the retrograde and ensuring that soldiers understand the purpose and duration of the operation, the commander can counter any negative effects of the operation on unit morale. After completing a retrograde operation, the commander may reconstitute the force. FM 4-100.9 establishes the basic principles of reconstitution.

HISTORICAL EXAMPLE

11-4. The following historical example illustrates how conducting a retrograde operation can preserve an army for future operations.

The Atlanta Campaign, 1864

The first two months of the Atlanta campaign illustrate the successful conduct of a delay in the face of superior forces. Between 5 May and 17 July, Johnston held Sherman to an average gain of one mile a day while preserving his freedom of maneuver and his army for future operations. This part of the campaign contains examples of successful delays, withdrawals, and retirements. Confederate actions at Resaca early in the campaign will be used to illustrate an unassisted withdrawal under enemy pressure. See Figure 11-1, page 11-2.

In May 1864, Confederate GEN Joseph E. Johnston and his 55,000-man *Army of Tennessee* had the mission of defending Atlanta. Johnston faced 110,000 Union soldiers, organized into seven corps under MG William T. Sherman's overall command. Johnston's campaign strategy was to force Sherman to culminate before reaching Atlanta, conserving his army's strength until he crippled the Union army in a defensive battle, and then launch a counteroffensive.

Union forces began the campaign on 5 May with an advance from positions southeast of Chattanooga. Forced to withdraw from his initial positions at Dalton because of a turning movement around his left flank by two Union corps, Johnston raced to position his forces to defend Resaca, Georgia. Johnston intended to hold at Resaca until he could cross his entire force over the Oostanaula River to its southern bank. At Resaca were three bridges that supported the Confederate's line of communication with the logistics base at Atlanta.

Johnston positioned the three corps—then constituting his army—to defend Resaca as they arrived on 13 May. May 14th and 15th saw attacks around Resaca, with neither side gaining a marked advantage. However, the right flank of the Union army moved within cannon range of the bridges. Forces that Sherman sent four miles to the southwest on another turning movement crossed

the river on 15 May, although they did not break out from their bridgehead on that day. Sherman intended to follow with his main force and either envelope Johnston or strike his flank during a retreat. Faced with these prospects. Johnston decided to withdraw across the river. A deceptive Confederate attack late on the 15th convinced Sherman that Johnston intended to stay in his current positions. The withdrawal at commenced midnight. Johnston left skirmishers along the line (a detachment left in contact), withdrawing forces in succession from his corps farthest from the bridges, then from his center corps,

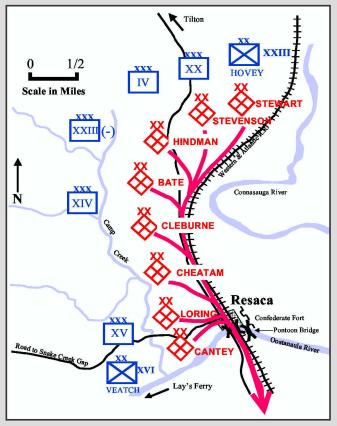


Figure 11-1. Withdrawal from Resaca

and finally from the corps closest to the bridges. One division from his right-wing corps constituted the army's rear guard. After the rear guard crossed the bridges, Johnston's engineers commenced their destruction. During the three hours required to withdraw Johnston's army across the river, Union forces did not detect the withdrawal until the Confederates began to destroy the bridges.

Johnston's mix of retrograde and defensive operations preserved his army as a constant threat to Sherman. Nevertheless, his strategy was unacceptable to Confederate President Jefferson Davis. Davis replaced him on 17 July 1864 with GEN John B. Hood. Hood attacked Sherman three time in two weeks, suffering heavy casualties and failing to seize the initiative. On 1 September, Sherman seized Atlanta, achieving the Union's strategic objective in the Western Theater before the national elections.

DELAY

11-5. A delay is a form of retrograde [JP 1-02 uses an operation] in which a force under pressure trades space for time by slowing down the enemy's momentum and inflicting maximum damage on the enemy without, in principle, becoming decisively engaged (JP 1-02, see delaying operation). The delay is one of the most demanding of all ground combat operations. A delay wears down the enemy so that friendly forces can regain the initiative through offensive action, buy time to establish an effective defense, or

determine enemy intentions as part of a security operation. Normally in a delay, inflicting casualties on the enemy is secondary to gaining time. For example, a flank security force conducts a delay operation to provide time for the protected force to establish a viable defense along its threatened flank. Except when directed to prevent enemy penetration of a phase line (PL) for a specific duration, a force conducting a delay normally does not become decisively engaged.

11-6. A delay operation can occur when the commander does not have enough friendly forces to attack or defend. It may also occur, based on a unit's mission, in conjunction with a higher commander's intent. The decision to conduct a delay may not be based on the unit's combat power, but on the other factors of METT-TC. For example, during security operations, the commander may conduct a delay as a shaping operation to draw the enemy into an area where he is vulnerable to a counterattack. Another example would be a delay instituted as an economy of force effort to allow the commander to conduct an offensive operation elsewhere.

11-7. The ability of a force to trade space for time requires depth within the area of operations (AO) assigned to the delaying force. The amount of depth required depends on several factors, including the—

- Amount of time to be gained.
- Relative combat power of friendly and enemy forces.
- · Relative mobility of the forces.
- Nature of the terrain.
- Ability to shape the AO with obstacles and fires.
- Degree of acceptable risk.

Ordinarily, the greater the available depth, the lower the risk involved to the delaying force and the greater the chance for success.

11-8. A delay succeeds by forcing the enemy to repeatedly concentrate his forces to fight through a series of defensive positions. A delaying force must offer a continued threat of serious opposition, forcing the enemy to repeatedly deploy and maneuver. Delaying forces displace to subsequent positions before the enemy is able to concentrate sufficient resources to decisively engage and defeat delaying forces in their current position. The length of time a force can remain in a position without facing the danger of becoming decisively engaged is primarily a function of the factors of METT-TC, such as the relative combat power and the terrain and weather.

ORGANIZATION OF FORCES

11-9. The commander normally organizes the delaying force into a main body, a security force, and a reserve. The security force usually conducts a screen forward of the initial delay positions. For a divisional cavalry squadron or a corps cavalry regiment conducting a delay, the security force executing the screen mission may consist of scouts or air cavalry. For a brigade or battalion conducting a delay, the security force may consist of the brigade reconnaissance troop, battalion scouts, or another element tasked to conduct security operations.

11-10. The main body, which contains the majority of the delaying force's combat power, may use alternate or subsequent positions to conduct the delay. The commander usually deploys his main body as a complete unit into a forward position when conducting a delay from subsequent positions. He divides his main body into two parts, roughly equal in combat power, to occupy each set of positions when conducting a delay from alternate positions.

11-11. The commander normally retains a reserve to contain enemy penetrations between positions, to reinforce fires into an engagement area (EA), or to help a unit disengage from the enemy. All of these missions require that the reserve has the mobility and strength to strike with such force that an enemy has no option but to face the immediate threat.

11-12. The extended frontages and ranges common to retrograde operations make the provision of fire support difficult and act to limit the commander's ability to mass fires. Therefore, retrograde forces, especially delay forces, often have more than the normal allocation of fire support assets. The commander's risk of losing artillery systems and their ammunition also increases when he is supporting retrograde operations. Therefore, he balances his decision to commit fire support systems forward against anticipated requirements in subsequent battle stages. In particular, he protects his towed artillery systems from being overrun by a mobile enemy. He can use available rotary- and fixed-wing aircraft to augment or replace his artillery systems.

11-13. Combat support (CS) and combat service support (CSS) assets are widely dispersed and often attached to the units they support because of the width of the AOs normally assigned in a delay. Engineer priorities are normally countermobility first, then mobility. However, restrictive terrain that impedes friendly movement may require the commander to reverse the priorities. Close coordination is necessary so that engineer obstacles are covered by fire and do not impede the planned withdrawal routes of delaying forces or the commitment of a counterattacking reserve force. The delaying force should have a greater-than-normal allocation of fire support systems.

11-14. The requirement to maintain continuous support during the delay requires CSS organizations to echelon their assets. This echelonment, coupled with the wide dispersion of combat forces that is inherent in a delay, complicates conducting the delay.

CONTROL MEASURES

11-15. The delay consists of a series of independent small-unit actions that occur simultaneously across the front. Subordinate commanders must have freedom of action. The tactical mission graphic for the delay appears in Figure 11-2. It is not a control measure. The control measures used in the delay are the same as those introduced in Chapter 8. Common graphics used in a delay include AOs, PLs, battle positions (BPs), coordination points, checkpoints, EAs, trigger lines, target reference points (TRPs), and disengagement lines. (See Figure 11-3.) The commander designates contact points in front of, between, and behind units to assist coordination, ensure continuity of the delay, and draw attention to enemy avenues of approach into unit flanks. (Chapter 15 addresses passage points with the passage of lines discussion.)

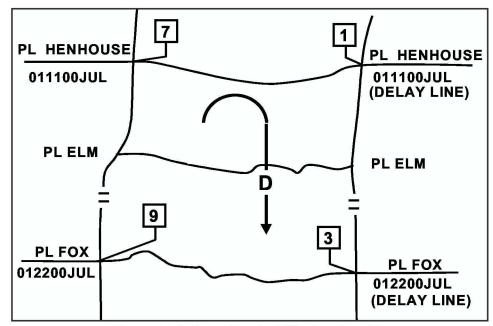


Figure 11-2. Delay Tactical Mission Graphic

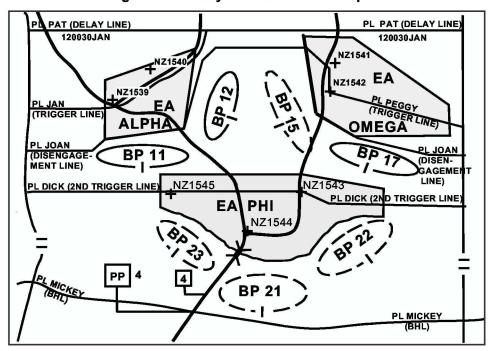


Figure 11-3. Control Measures for a Delay

11-16. In planning for a delaying action, the commander assigns an AO to each committed unit down through the company or troop level. The commander assigns each likely enemy avenue of approach to only one subordinate unit when he designates subordinate units' AOs. When the commander draws the boundaries of these subordinate AOs, he includes the terrain that controls fire and observation into those areas.

11-17. The commander designates additional PLs beyond those established by his higher commander as necessary to control movement during the delay. A delay line is a phase line where the date and time before which the enemy is not allowed to cross the phase line is depicted as part of the graphic control measure. Designating delay lines is a command decision that imposes a high degree of risk on the delaying unit. The delaying unit must do everything in its power—including accepting decisive engagement—to prevent the enemy from crossing that line before the time indicated. A delay line may also be event-driven. For example, a commander can order a delaying unit to prevent penetration of the delay line until his engineers complete construction of a rearward obstacle belt.

PLAN

11-18. Unit commanders and soldiers must understand and exercise the basics of defensive operations outlined in Chapter 8 to conduct a successful delay. However, these defensive basics have unique considerations, and the significance of these considerations varies depending on the factors of METT-TC. In a delay, units operate on extended frontages at great risk from advancing enemy forces. The tactical situation constantly changes with maneuver opportunities existing for only extremely short periods. Subordinate commanders must have the flexibility to take immediate action to retain the integrity of their forces. This helps retain their freedom of maneuver and inflict maximum destruction on the enemy.

11-19. The commander identifies ground and air avenues for enemy attacks and friendly counterattacks. When avenues of approach diverge or pass from one AO to another, adjacent units must coordinate with each other. Using the intelligence preparation of the battlefield process, the commander designates initial and subsequent delay positions on key terrain that covers likely enemy avenues of approach throughout the depth of the AO allocated to the delay mission.

11-20. Maintaining a mobility advantage over the attacker by the delaying force is key to successfully conducting a delay. Robust engineering and fire support are critical to this effort. The commander plans to maintain this advantage by taking full advantage of the mobility inherent in the combat and tactical systems available to the delaying force. In addition he takes other steps to enhance friendly mobility and degrade the enemy's mobility, such as building combat trails between delay positions and preparing bridges over major rivers for demolition. The delaying force should be capable of constructing large numbers of obstacles and delivering long-range fires. For example, while the enemy seeks to travel in movement formations that allow him to press his attack at the greatest speed, the delaying force's aim is to engage the enemy as early and often as possible. This forces the enemy out of those formations through a multiple series of time-consuming deployments into an assault formation.

11-21. The air defense portion of the plan has three main considerations—the protection of the force while it is in position, the protection of any forces left in contact, and the protection of the force as it moves to the rear. Priority of protection should be toward maintaining the mobility of the force. Air defense assets remain mobile yet able to engage aerial targets with little advance

warning. These assets should work in teams, able to move to the rear in alternating bounds. This ensures that dedicated air defense assets will always be in position, with the flexibility to keep pace with the operations. These firing points are not obvious positions that an enemy will probably target as part of his preparatory or support fires. Early warning of enemy air attack is provided over combat net radios using the command net at the brigade echelon and below.

11-22. Flanks and gaps between units are always areas of concern for a commander. In a linear deployment, the enemy can bypass or outflank the delaying force if coordination between adjacent friendly units is weak, or if one unit creates a gap by moving rearward too rapidly. Therefore, the commander normally designates BPs to guard approaches into his AO. Adjacent units of different commands must exchange liaison.

11-23. Displacement criteria should specify at what point—either event, or time-driven—the delaying force should begin its displacement. The commander should calculate enemy closure rates for the terrain and compare them to friendly displacement rates between positions. By comparing time and distance factors, he can calculate his movement window of time. By applying the enemy's probable rates of advance and formations to the avenues of approach, the commander can decide what obstacles to use and where to emplace them (covered by fires). It also helps the commander determine if and where decisive engagement is likely or required to achieve the delay objective. Careful consideration of the factors of METT-TC, especially terrain analysis, is an inherent part of delay planning.

Parameters of the Delay Order

11-24. An order for a delay mission must specify certain parameters. First, it must direct one of two alternatives: delay within the AO or delay forward of a specified line or terrain feature for a specified time. That time is usually based on another unit completing its activities, such as establishing rearward defensive positions. A mission of delay within the AO implies that force integrity is a prime consideration. In this case, the delaying force delays the enemy as long as possible while avoiding decisive engagement. Generally, this force displaces once predetermined criteria have been met, such as when the enemy force reaches a disengagement line. The control measures are the same for both alternatives, except that during a delay forward of a specified line for a specified time, the commander annotates the PL with the specified time. (See Figure 11-4.) If the commander establishes a delay line, mission accomplishment outweighs preservation of the force's integrity. It may require the force hold a given position until ordered to displace.

11-25. The second parameter is that the order must specify the acceptable risk. Acceptable risk ranges from accepting decisive engagement in an attempt to hold terrain for a given time to maintaining the integrity of the delaying force. The depth of the AO available for the delay, the time needed by higher headquarters, and subsequent missions for the delaying force determine the amount of acceptable risk. A delay mission that does not specify times, control of key terrain, or other guidance and control measures implies a lower degree of risk.

11-26. Third, the order must specify whether the delaying force may use the entire AO or must delay from specific BPs. A delay using the entire AO is preferable, but a delay from specific positions may be required to coordinate two or more units in the delay. To enhance command and control and to coordinate the battle across a broad front, the commander assigns units down to platoon-level specific BPs. However, he may assign them missions to delay within their AO if that best supports the scheme of maneuver.

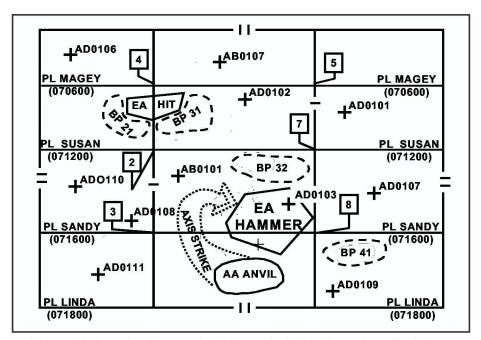


Figure 11-4. Delay Forward of a Specified Line for a Specified Time

Alternate and Subsequent Positions

11-27. The commander normally assigns his subordinate units contiguous AOs that are deeper than they are wide. He uses obstacles, fires, and movement throughout the depth of each assigned AO. He may be forced to fight from a single set of positions if the delay is only planned to last a short time or the AO's depth is limited. If the delay is expected to last for a longer period, or if sufficient depth is available, he may delay from either alternate or successive positions.

11-28. In both techniques, delaying forces normally reconnoiter subsequent positions before occupying them and, if possible, post guides on one or two subsequent positions. Additionally, in executing both techniques, it is critical that the delaying force maintains contact with the enemy between delay positions. (The advantages and disadvantages of the two techniques are summarized in Table 11-1, page 11-10.)

11-29. A commander normally prefers to use alternate positions when he has adequate forces and his AO has sufficient depth. In a delay from alternate positions, two or more units in a single AO occupy delaying positions in depth. (See Figure 11-5, page 11-10.) As the first unit engages the enemy, the second occupies the next position in depth and prepares to assume responsibility for

the operation. The first force disengages and passes around or through the second force. It then moves to the next position and prepares to reengage the enemy while the second force takes up the fight. Alternate positions are normally used when the delaying force operates on a narrow front. A delay from alternate positions is particularly useful on the most dangerous avenues of approach because it offers greater security than a delay from successive positions. However, it requires more forces and continuous maneuver coordination. Additionally, the delaying forces risk losing contact with the enemy between delay positions.

Table 11-1. Advantages and Disadvantages of Delay Techniques

METHOD OF DELAY	USE WHEN	ADVANTAGES	DISADVANTAGES
Delay from Subsequent Positions	AO is wide. Forces available do not allow themselves to be split.	Masses fires of all available combat elements.	 Limited depth to the delay positions. Less available time to prepare each position. Less flexibility.
Delay from Alternate Positions	AO is narrow. Forces are adequate to be split between different positions.	 Allows positioning in depth. Allows more time for equipment and soldier maintenance. Increases flexibility. 	 Requires continuous coordination. Requires passage of lines. Engages only part of the force at one time.

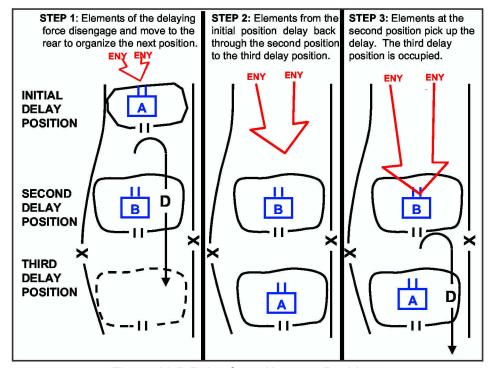


Figure 11-5. Delay from Alternate Positions

11-30. The commander uses a delay from subsequent positions when the assigned AO is so wide that available forces cannot occupy more than a single tier of positions. (See Figure 11-6.) In a delay from subsequent positions, all delaying units are committed to each of the series of BPs or across the AO on the same PL. Most of the delaying force is located well forward. The mission dictates the delay from one BP or PL to the next. The commander staggers the movement of delaying elements so that not all elements are moving at the same time.

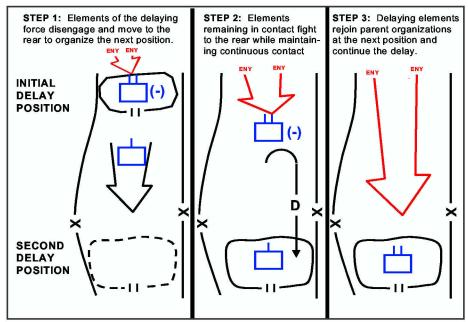


Figure 11-6. Delay from Subsequent Positions

Effects of Terrain

11-31. The commander always takes advantage of the terrain when planning how he positions his forces and conducts operations. He wants the terrain to favor his actions and not be a neutral factor. The terrain dictates where a delaying force can orient on a moving enemy force and ambush it. During a delay, compartmentalized terrain facilitates shorter displacements initiated at closer range to the enemy. The commander conducting operations in such terrain looks for locations that restrict the enemy's movement and prevent him from fully exploiting his combat superiority. On the other hand, flat or open terrain requires earlier displacements at greater distances to stay in front of the advancing enemy. In open terrain, the most important consideration in selecting a position is a good, long-range field of fire. A field of fire is the area that a weapon or group of weapons may cover effectively from a given position.

11-32. In restricted terrain, where a light force conducts the primary action, positions may be close together, except when conducting a delay using air assault techniques. In open terrain, delay positions are often far apart. In

selecting positions, the commander considers natural and artificial obstacles, particularly when the enemy has numerous armored combat systems.

11-33. The commander identifies routes that reinforcements, artillery units, command posts (CPs), and CSS elements will use and keeps them under his control and free of obstacles. Alternate routes should be available so that a friendly force can bypass choke points if they are closed or contaminated.

11-34. Disengaging from the enemy while displacing from one position to the next is difficult. The unit's disengagement plans include the following:

- The maneuver concept of operations for tactical elements after disengagement, which includes the movement routes for each small unit.
- Fires to suppress the enemy and cover the unit's movement.
- Offensive information operations to disrupt enemy C2 at critical moments.
- Screening smoke to conceal the unit's movement, conduct a deception operation, or cover passage points.
- Contact and passage points if moving through friendly lines.
- · Disengagement start times.
- The earliest time for CS and CSS elements to move.
- Designating units responsible for closing lanes through obstacles and executing reserve obstacles.

Intelligence

11-35. When conducting a delay operation, the commander may not get the most effective use of his intelligence assets. The commander echelons his organic and supporting ISR systems rearward to maintain at least partial coverage of the AO during the delay. This increases his need to ensure the effective management of collection assets. However, he must rely on a downward flow of intelligence and combat information, such as unmanned aerial vehicle and joint surveillance target attack radar system data, from higher echelons to make up for the degradation in collection capabilities that occurs when systems displace.

11-36. Initially, intelligence assets attempt to determine if the enemy recognizes the delay. Subsequently, the focus is on how the enemy reacts to the delay. Intelligence, surveillance, and reconnaissance systems monitor and predict enemy attempts to envelop the flanks or strike the rear of the rearward-moving friendly force. They also focus on actions of any enemy airborne, air assault, and attack aviation units that may try to interdict the movement of the friendly force. The delaying commander must detect the enemy's advance early to adjust his maneuver scheme and concentrate sufficient combat power to effectively delay the enemy.

Maneuver

11-37. A delay is one of the most difficult forms of defensive operations to execute. The primary reason is that the delaying force must engage the enemy sufficiently to slow his movement, yet not become decisively engaged. Also, the delaying unit must maintain continuous coordination with any flank units as it displaces rearward.

11-38. There are many similarities in the tactics and techniques of a mobile defense and a delay. However, units conducting a delay normally do not become decisively engaged except to prevent the enemy from prematurely crossing a delay line or to risk a part of the force to prevent the whole delaying force from being jeopardized.

11-39. Heavy forces—armor, mechanized infantry, and armored cavalry elements supported by indirect fires—are highly suitable for delay operations in most terrain. Their organic firepower allows them to engage the enemy effectively at long ranges, and their mobility allows them to move quickly between successive positions or to a flank. Their vehicles provide protection that simplifies battlefield movement. These same characteristics also allow heavy reserve forces to rapidly launch counterattacks to extract delaying forces from untenable situations.

11-40. Light forces are especially suited to conduct delays in broken, close, and built-up terrain. They take advantage of such terrain, reinforced by the extensive use of situational obstacles, to hinder the mobility of enemy combat systems and supporting tactical vehicles. They can also participate in stay-behind operations. (See paragraphs 11-118 to 11-122.) This type of terrain offers cover for the movement of light forces and favors using ambushes against the enemy. Because of the restrictions on organic motorized transportation assets and the limited protection available to light infantry units, the commander must specifically plan for their displacement. While all light forces can move rapidly by air, a delay offers little opportunity for airborne forces to use their unique capability.

11-41. The commander may employ air assault forces in a manner similar to that of other light infantry units in a delay. However, they possess additional useful capabilities in a delay operation. They can rapidly deploy, redeploy, and disperse in open terrain if the weather is suitable and the necessary landing zones and pickup zones exist. The combination of light infantry, attack helicopters, and fire support systems found in air assault units allows the delaying commander to rapidly concentrate combat power at key locations to attrit the enemy through repeated ambushes. The combined arms nature of air assault units also makes them extremely useful for conducting security and reserve operations over large geographical areas against heavy and light enemy forces. However, their extraction is a high-risk activity when pressured by a heavy enemy or in the presence of a significant air defense threat.

11-42. The mobility, lethality, and long range of attack aviation firepower make it invaluable to the force conducting a delay. The commander can also use them to conduct counterattacks and spoiling attacks as part of his combined arms team. Other uses of Army aviation in a delay include the rapid rearward movement of CSS assets, the deployment of light forces, and reconnaissance.

Command and Control

11-43. Centralized planning and decentralized execution characterize command and control in a delay operation. Communications are essential to the success of this type of operation, and the commander ensures that redundancy is built into his communications architecture. Digital command and

control systems help ensure that redundancy through the promulgation of a common operating picture and a distributed database. This allows one CP to temporarily assume the duties of another CP if the latter is destroyed.

11-44. The echelon rear CP is normally the first CP within an echelon to displace during a delay. It displaces by echelon with other CSS assets. The echelon main CP controls the movement of forces not in contact. It displaces by echelon with the main body. The echelon tactical CP usually remains forward to control and support forces in contact.

MOBILITY/COUNTERMOBILITY/SURVIVABILITY

11-45. Normally, countermobility is the most important engineer task, unless the delaying force must cross one or more major obstacles, in which case the major engineer task is mobility, specifically breach operations. The commander must set realistic and specific priorities for the engineer effort. He monitors its progress to prevent it from dissipating throughout the area. The commander employs his engineers in depth. This is crucial when the commander conducts noncontiguous operations or when the enemy attacks deep into the rear area of a force conducting contiguous operations, or when the enemy has the ability to employ weapons of mass destruction. The maneuver element provides security for the engineers so that they can concentrate their efforts on engineer tasks.

11-46. Because of the importance of mobility and countermobility tasks, a unit conducting a delay probably has few engineer assets to devote to the survivability function. Units should maximize the use of smoke when and where weather conditions allow to provide concealment for movement and assembly. Smoke curtains, blankets, and haze may protect withdrawing columns, critical points, and routes. The commander takes precautions to ensure that the smoke does not provide a screen for the enemy's advance. (See FM 3-11.50.)

PREPARE

11-47. The defensive preparations outlined in Chapter 8 also apply when conducting a delay. As always, resources—including the time available—determine the extent of preparations. The commander assigns a high priority to reconnaissance. Additionally, the preparation of subsequent positions receives a higher priority than it does in either a mobile or an area defense. It is not always possible to complete all preparations before starting the delay operation. Consequently, delaying units continue to prepare and adapt plans as the situation develops.

11-48. In the delay, the commander uses BPs in a manner similar to the defense. However, when organizing his BPs, he places more emphasis on width than depth, as well as reconnaissance and preparing routes for displacement. Within each BP, most of the available firepower is oriented toward the expected enemy avenue of approach. However, the commander must provide adequate flank and rear security since the delaying unit must furnish its own security. Each crew and squad should be familiar with the routes from its primary positions to alternate, supplementary, and sequential positions. In preparing a BP, the commander conducting a delay places less emphasis on installing protective obstacles, final protective fires (FPFs), and ammunition

stockpiling than he would in either an area or a mobile defense. In a delay, BPs are sometimes referred to as delay positions.

EXECUTE

11-49. The complex nature of a delay requires the subordinate elements of a delaying force to execute different yet complementary actions. In a single delaying operation, attacks, area defenses, mobile defenses, and other actions may occur in any sequence or simultaneously. For example, the commander may elect to assign one delaying element the task of holding a key road intersection for a period of time so a reserve force can strike the enemy's flank. Therefore, the enemy must deploy into a hasty defense, which delays his attack.

11-50. The commander deploys his security force well forward of his initial delay position to give early warning of any enemy approach. When the security force detects and reports an approach, the commander reconciles these reports against his decision support and event templates to confirm the enemy's probable course of action. Based on his interpretation of how the battle will unfold, the commander can direct one subordinate element to maneuver in a manner designed to draw the advancing enemy into a position of disadvantage.

11-51. The security force fixes, defeats, and destroys the enemy's reconnaissance and security elements without risking decisive engagement. It directs fires at the approaching enemy force as far forward of the delay positions as possible. Engaging a moving enemy at long ranges tends to inflict far more casualties on him than he can inflict on the delaying force; it also slows his tempo of operations. The more a delaying force can blind an enemy and eliminate his reconnaissance assets, the more likely he is to hesitate and move with caution.

11-52. Once the security force makes contact with the enemy, it maintains contact. As the enemy approaches, it moves by bounds back to the flanks of the defending units, keeping the enemy under constant observation. This helps prevent the enemy from finding gaps between delaying units and attacking the exposed flanks of delaying units. The security force uses covered, concealed, and coordinated routes to avoid enemy and friendly fires.

11-53. Recovering security assets may be more difficult if the security force needs to pass through the range fan of friendly tanks and other direct-fire weapons in their movement. Recovery should be to the flanks of delay positions and not through EAs and TRPs unless necessary. Security forces should move so that they do not reveal the locations of other friendly elements.

11-54. The main body uses a variety of tactics to execute the delay. These include ambushes, counterattacks, spoiling attacks, artillery raids, jamming, and close air support. The commander of the delay force preserves his freedom to maneuver by engaging the enemy with sufficient force to temporarily stop his advance. The delay force uses obstacles and defensive positions in depth to slow and canalize the enemy and exploit the mobility of its combat systems to confuse and defeat the enemy. Once a delay starts, units displace rapidly between positions. Whenever possible, the commander grasps any fleeting opportunity to seize the initiative, even if only temporarily. By

aggressively contesting the enemy's initiative through offensive action, the delaying force avoids passive patterns that favor the attacking enemy. The delaying force may conduct strong counterattacks from unexpected directions to temporarily confuse the enemy commander. Attacking an enemy throws him off stride, disorganizes his forces, confuses his picture of the fight, and helps prolong the delay. In turn, this confusion may affect the enemy's tempo and momentum. It also affects the movement of enemy reserves and other follow-on forces. However, the delaying force seeks to avoid decisive engagement.

11-55. In a delay, the commander uses his fire support assets to delay enemy forces, inflict casualties on them, and assist the friendly force to gain a mobility advantage over them. Indirect fires continue throughout the delay. The effects of the commander's fire support assets can disrupt the enemy's follow-on forces and restrict the immediate battle to his committed forces. Close air support and attack helicopters can engage enemy forces before they come within range of the supporting field artillery systems. The commander should weigh the effects required, however, since attack aviation is a limited resource and CAS aircraft are a fleeting resource. Massing of fires, to include the killing power of the unit in contact, should be the objective. However, this should not delay integration of CAS aircraft, given limited loiter times.

11-56. Artillery and mortar systems support the direct-fire fight to prevent the enemy from conducting a combined arms attack on the delay position. As the enemy encounters each situational obstacle, he is engaged by these fire support systems. These fires should cause enemy armored forces to button up and slow down. Artillery and mortar systems can use fires to separate enemy formations by striking the enemy when he concentrates near choke points and in EAs. Integrating fires and obstacles makes it difficult for the enemy to traverse EAs. The delaying force breaks the enemy's momentum by forcing him to deploy and by inflicting casualties. Fires assist delaying forces by—

- · Assisting in disengaging maneuver forces.
- Suppressing the enemy.
- Degrading the enemy's ability to move and communicate.
- Obscuring the enemy's overwatching support by fire positions and degrading his ISR and target acquisition systems.
- Reinforcing or closing breaches or lanes in obstacles.
- · Executing FPFs.
- Screening friendly displacements and disengagements by using smoke.
 (This also degrades the enemy's terminal guidance of his precision-guided munitions.)
- Destroying high-payoff targets.
- Supporting limited counterattacks.

11-57. As the enemy approaches the delay position, he crosses one or more trigger lines and moves into EAs within the range of the delaying force's antiarmor missiles, tank cannons, and small arms. The commander holds his direct fire until the enemy is positioned where the fire plan and scheme of maneuver require their use. He controls these fires from the delaying force in the same manner as in any defensive operation. The more damage the delaying force can inflict on the enemy, the longer it can stay in position.

11-58. As the enemy presses his attack and attempts to maneuver against the delaying force, the commander constantly assesses the action to guide the displacements of the delay force to anticipate possible decisive engagement while accomplishing the delay mission. When the enemy begins to think he is successfully maneuvering against a friendly position, he is engaged by indirect fires while the delaying force disappears behind a cloud of smoke, dust, and exploding munitions. Intense FPFs and fires aimed at and behind recently evacuated friendly delay positions allow the delaying force to disengage from an attacking enemy.

11-59. Division and brigade commanders generally decentralize execution of a delay to battalion and lower levels. Those senior commanders must rely on their subordinates to execute the mission and request help when needed. The commander establishes the acceptable risk and displacement criteria. Subordinates displace once they meet the previously established delay criteria. This displacement may be a preplanned event or time dependent. The senior commander monitors the delay and intervenes when the displacement of one unit threatens the survival of another.

11-60. The delaying force relies heavily on artillery fires and air support to suppress the enemy so the force can disengage, move, and occupy new positions. If a subordinate element cannot maintain separation from the enemy, the commander can shift additional combat multipliers and other resources to that particular AO to counter the enemy's unplanned success. As one subordinate element displaces, the delaying commander may order other subordinate elements to change their orientation to cover the move. Each displacing element travels along its designated route, using reserve demolitions as required and requesting additional fire support if the enemy is able to maintain contact.

11-61. Passing through obstacle lanes during displacement between positions poses significant risks to the delaying force. The unit passing through a linear obstacle becomes more vulnerable to enemy attack because of the danger of the delaying force becoming congested on the far side of the obstacle. Obstacle lanes also increase the amount of time required for a passing unit to transit through a given area. The commander must attempt to prevent the enemy from engaging the passing unit until it can redeploy into a tactical formation.

11-62. The commander retains his reserve for the decisive moment. As with aviation, the reserve should not be committed early in the delay unless its integrity is threatened. Typically, the commander commits his reserve to help a unit disengage and regain its ability to maneuver or to prevent the enemy from exploiting an advantage. The reserve normally uses a support-by-fire position for this task. If the reserve is committed early, the commander's ability to influence the battle is greatly reduced unless he can reconstitute a new reserve. It is possible to commit the reserve several times throughout the battle, but only when it can be extracted, redesignated, or otherwise reconstituted quickly.

11-63. In the delay, the force's CSS elements should be located outside of enemy artillery range but be able to provide adequate support. Artillery ammunition stocks must be capable of sustaining the quantity of fire support required in the delay. Maintenance operations focus on evacuating rather than

returning damaged vehicles to combat. Unless vehicles can be fixed quickly on the spot, the unit should evacuate them to the rear area because vehicles left behind must be destroyed to prevent their capture.

TERMINATION OF A DELAY

11-64. A delay operation terminates when the delaying force conducts a rearward passage of lines through a defending force, the delaying force reaches defensible terrain and transitions to the defense, the advancing enemy force reaches a culminating point, or the delaying force goes on the offense after being reinforced. If the advancing enemy force reaches a culmination point, the delaying force may maintain contact in current positions, withdraw to perform another mission, or transition to the offense. In all cases, the senior commander must plan for the expected outcome of the delay executed by a subordinate. If he expects a friendly counterattack, he plans for the forward passage of the counterattack force, husbands resources to ensure relative combat superiority, and provides for the smooth handoff of appropriate AOs.

WITHDRAWAL

11-65. A withdrawal, a form of retrograde, is a planned operation in which a force in contact disengages from an enemy force (FM 3-0). The commander may or may not conduct a withdrawal under enemy pressure. Subordinate units may withdraw without the entire force withdrawing. A unit conducts a withdrawal for a variety of reasons, which are listed at the beginning of this chapter. In addition, a withdrawal may precede a retirement operation.

11-66. Although the commander avoids withdrawing from action under enemy pressure, it is not always possible. He may conduct a withdrawal when the situation requires rapid action to save the command from disaster. This usually occurs after a tactical reverse or after a unit reaches its culminating point. When an aggressive enemy becomes aware of a friendly force's withdrawal or its intention to withdraw, he attempts to exploit the withdrawal, using all his capabilities to try to turn the withdrawal into a rout. He may have ground and air superiority and continuously attempt to pursue, encircle, and destroy the withdrawing force. He will try to use a combination of direct pressure and enveloping forces and fires to isolate the withdrawing friendly force for later destruction.

11-67. Withdrawals are inherently dangerous because they involve moving units to the rear and away from what is usually a stronger enemy force. The heavier the previous fighting and the closer the contact with the enemy, the more difficult the withdrawal. Operations security (OPSEC) is extremely important. A unit usually confines its rearward movement to times and conditions when the enemy cannot observe the activity, so that he cannot easily detect the operation. To help preserve secrecy and freedom of action, for example, the commander must consider visibility conditions and times when enemy reconnaissance satellites can observe friendly movements. Operations security is especially critical during the initial stages of a delay when the majority of CS and CSS elements displace.

11-68. A unit withdraws to an assembly area or a new defensive position. Alternatively, it can withdraw indirectly to either area through one or more

intermediate positions. When preparing the new position, the commander balances the need for security with the need to get an early start on the defensive effort.

ORGANIZATION OF FORCES

11-69. The commander typically organizes his withdrawing unit into a security force, a main body, and a reserve. He also organizes a detachment left in contact (DLIC) and stay-behind forces if required by his scheme of maneuver. He avoids changing task organization unless his subordinates have sufficient planning time. However, circumstances may dictate rapid task organization changes immediately before the withdrawal, such as when the unit must conduct an immediate withdrawal to prevent encirclement.

11-70. The security force maintains contact with the enemy until ordered to disengage or until another force takes over. It simulates the continued presence of the main body, which requires additional allocation of combat multipliers beyond those normally allocated to a force of its size. The greater its mobility and range advantages over the enemy, the easier for the security force to successfully cover the main body's withdrawal. The commander organizes the majority of available combat power to the security force as a rear guard or a rear-covering force; the most probable threat to a withdrawing force is a pursuing enemy. However, the commander must maintain allaround security of the withdrawing force. When the enemy can infiltrate or insert forces ahead of the withdrawing force, the commander may establish an advance guard to clear the route or AO. He designates a flank guard or screen, if required.

11-71. When a security zone exists between the two main opposing forces, the existing security force can transition on order to a rear guard or rear-covering force. It then conducts delay operations until ordered to disengage and break contact with the enemy. When the withdrawing force is in close contact with the enemy, a security zone does not normally exist. Withdrawals under these conditions require that security forces adopt different techniques. One technique is to establish a DLIC to provide a way to sequentially break contact with the enemy.

11-72. A detachment left in contact is an element left in contact as part of the previously designated (usually rear) security force while the main body conducts its withdrawal. Its primary purpose is to remain behind to deceive the enemy into believing the parent unit is still in position while the majority of the unit withdraws. It simulates—as nearly as possible—the continued presence of the main body until it is too late for the enemy to react by conducting activities, such as electronic transmissions or attacks. The DLIC must have specific instructions about what to do when the enemy attacks and when and under what circumstances to delay or withdraw. If the DLIC must disengage from the enemy, it uses the same techniques as in the delay. If required, this detachment receives additional recovery, evacuation, and transportation assets to use after disengagement to speed its rearward movement.

11-73. Two methods to resource the DLIC exist. The first is for each major subordinate element of the withdrawing force to leave a subelement in place.

For example, in a brigade withdrawal, each task force leaves a company team in contact. Typically, these teams fall under a senior DLIC commander designated by the brigade commander. Alternatively, one major subordinate command of the withdrawing force can stay behind as the DLIC. For example, a brigade could leave one battalion task force as the DLIC, which then expands its security responsibilities to cover the width of the AO. (See Figure 11-7.)

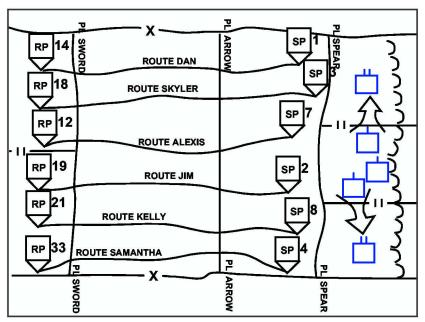


Figure 11-7. Detachment Left in Contact

11-74. Often when a DLIC is used, the commander creates an additional security force behind the existing main defensive positions to assist in the withdrawal process. The commander can create an additional force from the withdrawing unit or from an assisting unit. The DLIC can delay to this additional security force and join it, or delay back, conduct battle handover, and then conduct a rearward passage of lines. In either case, the additional security force becomes the rear guard.

11-75. The main body of the withdrawing force consists of all elements remaining after the commander resources his security force and his reserve. He generally finds it difficult to resource a reserve, but he makes every attempt to do so. When the complete formation withdraws under pressure, the reserve may take limited offensive action, such as spoiling attacks, to disorganize, disrupt, and delay the enemy. It can counter penetrations between positions, reinforce threatened areas, and protect withdrawal routes. Reserves may also extricate encircled or heavily engaged forces.

CONTROL MEASURES

11-76. Withdrawing forces must apply combat power to protect themselves while simultaneously moving combat power away from the enemy. This

requires careful coordination among all forces. Throughout the operation, the commander must tightly control rearward movement and maintain the ability to generate decisive combat power at key times and places. As shown in Figure 11-8, the control measures used in the withdrawal are the same as those in a delay or a defense. The routes used by each unit in the withdrawal and the block movement times are also withdrawal control measures.

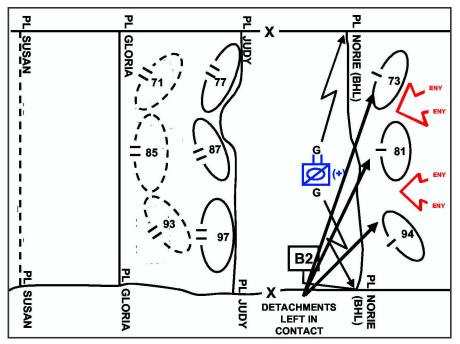
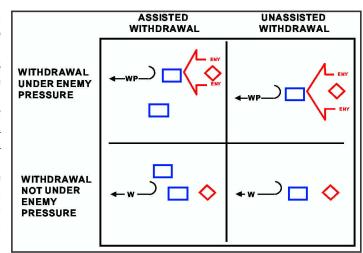


Figure 11-8. Withdrawal Control Measures


PLANNING A WITHDRAWAL

11-77. The commander plans and coordinates a withdrawal in the same manner as a delay. Some factors of METT-TC apply differently because of the differences between a delay and a withdrawal. A withdrawal always begins under the threat of enemy interference. Because the force is most vulnerable if the enemy attacks, the commander always plans for a withdrawal under pressure. He then develops contingencies for a withdrawal without pressure. In both cases, the commander's main considerations are to—

- Plan a deliberate break from the enemy.
- Displace the main body rapidly, free of enemy interference.
- Safeguard the withdrawal routes.
- Retain sufficient combat, CS, and CSS capabilities throughout the operation to support forces in contact with the enemy.

11-78. A withdrawal may be assisted or unassisted. It may or may not take place under enemy pressure. These two factors combined produces the four variations shown in Figure 11-9, page 11-22. That figure also depicts the tactical mission graphic for a withdrawal and a withdrawal under enemy pressure. The withdrawal plan considers which variation the force currently faces. Each variation requires a different blend of the three retrograde options.

11-79. A commander prefers to conduct a withdrawal while not under pressure and without assistance. Actions by the enemy, as well as the additional coordination needed because of the presence of an assisting unit, complicate the operation.

11-80. A withdrawing force can

Figure 11-9. Types of Withdrawals

receive assistance from another force in the form of-

- Additional security for the area through which the withdrawing force will pass.
- Information concerning withdrawal routes.
- Forces to secure choke points or key terrain along withdrawal routes.
- Elements to assist in movement control, such as traffic control points.
- Required combat, CS, and CSS, which can involve conducting a counterattack to assist the withdrawing unit in disengaging from the enemy.

11-81. In a withdrawal under enemy pressure, all units withdraw simultaneously when available routes allow, using delaying tactics to fight their way to the rear. In the usual case, when simultaneous withdrawal of all forces is not practical, the commander decides the order of withdrawal. Several factors influence his decision:

- Subsequent missions.
- · Availability of transportation assets and routes.
- Disposition of friendly and enemy forces.
- Level and nature of enemy pressure.
- Degree of urgency associated with the withdrawal.

The commander must make three interrelated key decisions: when to start the movement of selected CS and CSS elements, when forward elements should start thinning out, and when the security force should start its disengagement operations. The commander avoids premature actions that lead the enemy to believe a withdrawal is being contemplated. Commanders must anticipate enemy means of interference and plan for employing security forces, attack helicopters, and close air support.

11-82. The commander conducting a withdrawal without enemy pressure can plan when to begin the withdrawal. He has the option of taking calculated risks to increase the displacement capabilities of his force. For example, he may order the main body to conduct a tactical road march instead of moving

in tactical formations. The commander can plan for stay-behind forces as part of the operation. (The stay-behind operations starts on page 11-30.)

PREPARING A WITHDRAWAL

11-83. Before withdrawing, the main body dispatches quartering parties to help it occupy the new position. (Chapter 14 details the responsibilities of a quartering party.)

11-84. In an unassisted withdrawal, the withdrawing unit establishes its own security force and reserve. It reconnoiters and secures the routes it will use in its rearward movement while sustaining itself during the withdrawal. The withdrawing unit must disengage from the enemy.

11-85. By concealing supplies along movement routes, CSS operators can simplify support requirements and reduce the enemy's ability to interfere with logistics operations. This allows CSS units to withdraw earlier than they otherwise could. The commander carefully considers whether to place his supplies in caches. Once cached, supplies are difficult to recover if the operation does not go as planned. Other than medical items, the unit evacuates or destroys all supplies to prevent their capture. The commander establishes his destruction criteria, which is time- or event-driven for each class of supply.

EXECUTING A WITHDRAWAL

11-86. Typically, when under enemy pressure, the less heavily engaged elements of the withdrawing force withdraw first. The more heavily engaged units generally withdraw under the cover of a security force using support provided by available fire support and electronic warfare assets. They take advantage of obstacles to assist in breaking contact with the enemy. The commander conducts night movements and uses obscuration smoke to screen friendly movement while reducing both the accuracy of enemy direct-fire systems and his ability to visually observe friendly movements. The security force continues to use alternate and successive positions until the entire force breaks contact with the enemy.

11-87. The security force may remain in position and maintain a deception. The main body moves rearward to intermediate or final positions as rapidly as possible. After the main body withdraws a safe distance, the security force begins its rearward movement. Once the security force begins moving, it assumes the duties of a rear guard. Even if the enemy does not pursue the withdrawing force, the security force continues to act as the rear guard unless the commander assigns that mission to another element. However, if not pursued by the enemy, the security force may remain in a march column. (Chapter 14 provides a definition of a march column.)

11-88. On order, the main body moves rapidly on multiple routes to reconnoitered positions. It may occupy a series of intermediate positions before completing the withdrawal. Usually CS and CSS units, along with their convoy escorts, move first and precede combat units in the withdrawal movement formation. The commander needs to maintain the disciplined use of routes during a withdrawal. Despite confusion and enemy pressure, subordinate units must follow specified routes and movement times.

11-89. When the main body withdraws, its reserve remains well forward to assist the security force and other units by fire and counterattack. The reserve can launch spoiling attacks to disorganize and delay the enemy and extricate encircled or heavily engaged forces.

11-90. If the security force and the reserve cannot prevent the enemy from closing on the main body, the commander must commit some or all of the main body to prevent the enemy from further interfering with the withdrawal. The main body delays or defends if the security force fails to slow the enemy. In this event, the withdrawal resumes at the earliest possible time. If the enemy blocks movement to the rear, the commander shifts to alternate routes to bypass the interdicted area. Alternatively, he can attack through the enemy.

TERMINATING A WITHDRAWAL

11-91. Once the withdrawing force successfully disengages from the enemy, it has two options. It can rejoin the overall defense under more favorable conditions or transition into a retirement and continue its movement away from the enemy and toward its next mission.

RETIREMENT

11-92. A retirement is a form of retrograde in which a force out of contact with the enemy moves away from the enemy (JP 1-02). Figure 11-10, page 11-24 shows the tactical mission graphic for a retirement. A retiring unit organizes for combat but does not anticipate interference by enemy ground forces. Typically, another unit's security force covers the movement of one formation as the unit conducts a retirement. However, mobile enemy forces, unconventional forces, air strikes, air assaults, or long-range fires may attempt to interdict the retiring unit. The commander must plan for enemy actions and organize the unit to fight in self-defense. The commander usually

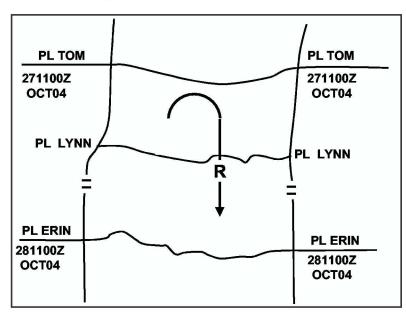


Figure 11-10. Retirement Tactical Mission Graphic

conducts retirement operations to reposition his forces for future operations or to accommodate the current concept of the operation.

11-93. When a withdrawal from action precedes a retirement, the actual retirement begins after the unit breaks contact and organizes into its march formation organization. (While a force withdrawing without enemy pressure can also use march columns, the difference between the two situations is the probability of enemy interference.) Units conduct retirements as tactical road marches where security and speed are the most important considerations.

11-94. The retiring unit generally moves toward an assembly area, which should support the preparations for the unit's next mission. When determining the routes the retiring force takes to the assembly area, the commander considers the unit's capability to support defensive actions if combat occurs during the retirement.

11-95. The initial action in a retirement is to move CSS units and supplies to the rear. At the designated time, the retiring unit executes a withdrawal from action and forms into a march formation. The unit can first move into an assembly area if this step is necessary before moving into a march formation to reestablish command and control or resupply. Once it forms a march formation, the force is prepared to initiate the retirement. During the initial phase, the force retires in multiple small columns. As the distance from the enemy increases, smaller columns can consolidate into larger ones for ease of movement control. Road nets and the potential for hostile interference influence how and when this consolidation occurs.

ORGANIZATION OF FORCES

11-96. The commander normally designates security elements and a main body in a retirement. (See Figure 11-11.) The formation and number of columns employed during a retirement depend on the number of available routes and the potential for enemy interference. The commander typically wants to move his major elements to the rear simultaneously. However, a

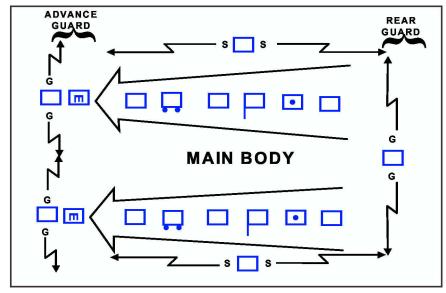


Figure 11-11. Organization of Forces for a Retirement Operation

limited road net or a flank threat may require echelonment of the movement in terms of time and ground locations.

11-97. The terrain and the enemy threat dictate whether the retiring force establishes a single rear security force, which is usually a rear guard, or whether each column forms a separate rear security force. These security forces protect the rearward moving columns from surprise, harassment, and attack by any pursuing enemy force. Their size and composition depend on the strength and imminence of the enemy threat. These security elements generally remain in march columns unless there is a potential for enemy interference. If the enemy establishes contact, the rear security element conducts a delay.

11-98. The retiring march columns normally require an advance guard augmented by engineers. The commander assigns a flank security element to prevent potential enemy interference with the retiring force's extended columns. The commander may designate flank security responsibilities to subordinate march units.

11-99. The main body organizes in a manner opposite that of an approach march. (Chapter 14 explains the approach march.) The movement of CS and CSS units should precede the movement of combat forces. When necessary, elements of the main body can reinforce the rear guard or any other security element. Because fire support elements and attack helicopter elements of the main body can respond most rapidly, they are usually the first elements tasked for this mission.

CONTROL MEASURES

11-100. The control measures used in a retirement are the same as those in a delay and a withdrawal. As in a withdrawal, thorough planning and strict adherence to routes and movement times facilitate an orderly retirement. Typically, the commander controls movement using movement times, routes, and checkpoints. (Chapter 14 discusses movement control measures.)

COMBAT SERVICE SUPPORT

11-101. During retrograde operations, CSS units echelon their movements to maintain adequate support to the committed force. They maintain maximum dispersion consistent with control and local security. Their goal is to provide uninterrupted support and maximum protection during the time it takes to conduct the retrograde operation. By echeloning support, the commander reduces the amount of time each CSS unit spends moving, preventing it from performing its primary support tasks. High-priority assets may require added protection to prevent their loss or capture. To reduce congestion and interference with the operations of combat and combat support units, the commander should displace his CSS assets as early as possible, normally in an environment that provides the enemy limited visibility. The early displacement of CSS units can also prevent revealing friendly future operations to the enemy.

11-102. The commander anticipates the effects of retrograde movements on logistics support to ensure adequate support for the operation and the prompt evacuation of casualties. Retrograde movements generally result in increased distances between CSS and combat units, which makes providing this

support more difficult. Executing retrograde operations generally requires more Class III, and possibly more Class V, supplies than other types of defensive operations. These supplies must be available for emergency issue. These two factors combine to increase the demand for transportation assets and the allocation of space on main supply routes. This, in turn, increases the need for movement management and pre-positioned services and supplies. Combat service support units carry and cache necessary fuel and ammunition stocks as required by the specific situation.

11-103. The logistics support provided must be mobile to cope with demands of the fluid tactical situation that typically occurs during a retrograde operation. The commander prevents unnecessary supplies from accumulating in areas that will be abandoned. Only essential medical and logistics support should be located in the area involved in the retrograde operation.

11-104. The commander establishes his maintenance, recovery, and evacuation priorities and his destruction criteria for inoperable equipment in paragraph 4 of the operations order. Maintenance requirements generally overwhelm the organic capabilities of forward units during a retrograde operation. Forward units place as much maintenance, recovery, and evacuation assets forward as possible to augment or relieve combat elements of the burden of repairing unserviceable equipment. Recovery and evacuation vehicles position themselves at critical locations to keep disabled vehicles from blocking movement routes. Forward units evacuate systems that cannot be repaired within established timelines, using all available means, such as equipment transporters and armored vehicles with inoperative weapon systems. When recovery and evacuation are impossible, units destroy inoperable equipment to prevent capture. When possible, units destroy the same vital components in each type of system to prevent the enemy from rapidly exploiting captured friendly systems through battlefield cannibalization.

11-105. The commander assigns transportation priorities to the movement of combat troops and their supplies, the movement of obstacle materials to impede the enemy, and the evacuation of casualties and repairable equipment. He keeps his main supply routes open and decontaminated as necessary. Units control the back-haul of transportation assets before the retrograde begins, reducing the amount of transportation needed to support the operation.

11-106. Generally, the commander prefers to use many separate supply routes rather than just a few main supply routes. Some routes remain open for traffic moving to the front while the bulk of CS and CSS units displace farther rearward. Routes reserved for evacuating displaced civilians avoid crossing or otherwise interfering with the unit's main supply routes to the maximum extent possible.

11-107. The commander bases his medical evacuation priorities on the availability of transportation assets and the results of casualty triage by medical personnel. Medical elements supporting the retrograding force must provide rapid evacuation of casualties to medical facilities. Medical evacuation requirements are especially demanding in the large AOs common to the retrograde. The commander should consider augmenting the ground ambulance capabilities of his forward medical units.

11-108. Military police elements of the retrograde force are involved primarily in battlefield circulation control to ensure smooth traffic flow. The commander may augment his military police force to establish traffic control points and route and convoy security. They also help control dislocated civilians and enemy prisoners of war.

UNIQUE RETROGRADE SITUATIONS

11-109. Conditions that require conducting denial and stay-behind operations can arise during retrograde operations. These two operations have their own unique planning and execution considerations.

DENIAL OPERATIONS

11-110. *Denial operations* are actions to hinder or deny the enemy the use of space, personnel, supplies, or facilities. It may include destroying, removing, and contaminating those supplies and facilities or erecting obstacles. It is inevitable that, on occasion, an enemy will be in a position to capture friendly equipment and supplies. This situation often occurs during retrograde or defensive operations. As a result, the defending commander may be required to conduct denial operations. The principles of denial are:

- The commander should deny his enemy the use of military equipment and supplies.
- Steps taken to deny equipment and supplies to the enemy should, if possible, not preclude their later use by friendly forces.
- The commander orders the destruction of military equipment and supplies only when friendly forces cannot prevent them from falling into enemy hands.
- The user is responsible for denying the enemy the use of its military equipment and supplies by means of its destruction, removal, or contamination.
- Deliberately destroying medical equipment and supplies and making food and water unfit for consumption is unlawful under the terms of the Geneva Conventions.

In denial operations, the definition of a unit's military equipment and supplies could expand to include military installations and any civilian equipment and supplies used by the friendly force. Under the law of war the destruction of civilian property is only permitted where required by immediate military necessity. The determination of whether there is sufficient necessity to justify destruction is a complex analysis that requires consideration of moral, political, and legal considerations.

11-111. The commander who orders the denial operation must consider the potential value of the military equipment and supplies to an enemy when determining the priorities and the extent of the denial operation. Examples of high priorities for denial include—

- Classified equipment, material, and documents.
- POL.
- Sophisticated weapon systems or electronic equipment.
- Heavy weapons and associated ammunition.

- Communications equipment.
- Ferrying and bridging equipment.
- Air, sea, and land transport systems.

Of lesser priority for denial would be any other military supplies, equipment, or facilities that may be of use to an enemy.

11-112. The commander must issue detailed instructions to deny military equipment and supplies to prevent the enemy from directly using such assets. Denial must also prevent an enemy from repairing a system through the cannibalization of several systems. The unit must destroy the same parts in each type of system.

11-113. Denial differs from countermobility operations because the commander designs denial operations to deprive the enemy of some or all of the short-term benefits of capturing a geographical region. The impact of denial operations on civilian inhabitants and the environment of the region act as a moral and a legal restraint on their use and scope by US forces. The commander should involve his staff judge advocate and civil-military operations officer in planning denial operations.

11-114. The commander ensures that executing the denial plan does not adversely affect his future operations. This includes carefully considering the force's demolition policy in relation to the purpose of the rearward movement and the contemplated subsequent actions of the force. Widespread demolitions during a retrograde may become a greater hindrance to a friendly force moving back into the area than to the enemy during the friendly retrograde. For example, destroying the transportation infrastructure increases friendly logistics difficulties once the area is recaptured. Removing or destroying militarily significant supplies and equipment, such as fuel, obstacle materials, and rail cars, from an area requires the friendly force to bring similar assets with them when they reoccupy the area.

11-115. The commander can expand a denial operation to prevent the enemy from exploiting resources, such as fuel, minerals, and the indigenous population; routes of communication, such as river locks, railroad switching yards, road interchanges, and bridges; and facilities, such as telephone exchanges, radio and television stations, and the industrial plants of a region. The defending force can assist civil authorities in evacuating the civilian population. The defending force either removes the resources, supplies, and facilities from the geographical area being abandoned to the enemy or destroys them in place. Such denial operations may be either total or limited in nature.

11-116. Total denial operations can produce long-term political, economic, military, and environmental effects. Total denial operations have operational-level, and possibly strategic-level, impact. Total denial operations consume large quantities of transportation and engineer resources and require considerable time to plan and execute.

11-117. Limited or partial denial operations are particularly suitable if the defending force expects to regain control of the geographical area within a short time. The removal or destruction of only a few key components can reduce a facility to limited utility, yet it allows for the facility's quick restoration of all functions once it is returned to friendly control. American forces

only destroy discrete targets of significant military value. Limited denial operations normally do not affect the advance of properly supported enemy combat formations possessing cross-country mobility. However, they can seriously impede an enemy's road-bound and rail-bound logistics support if executed with skill and imagination according to an overall plan.

STAY-BEHIND OPERATIONS

11-118. A stay-behind operation is an operation in which the commander leaves a unit in position to conduct a specified mission while the remainder of his forces withdraw or retire from an area. The force should consist of enough combat, CS, and CSS elements to protect and sustain its fighting capability for the duration of the mission. A stay-behind force may also result from enemy actions that bypass friendly forces.

11-119. The main purpose of a stay-behind force is to destroy, disrupt, and deceive the enemy. This force has a high-risk mission because of the danger that it will be located, encircled, and destroyed by the enemy. Resupply and casualty evacuation are also extremely difficult. A commander considers assigning this mission only after a thorough METT-TC analysis. The stay-behind force attacks enemy combat forces and C2, CS, and CSS elements from unexpected directions. (See Figure 11-12.) These attacks may cause enemy follow-on forces to be more cautious and to slow down to clear possible attack and ambush sites. The stay-behind force may be required to conduct a breakout from encirclement and linkup operations after it completes its mission. (Appendix D discusses the conduct of a breakout from encirclement.)

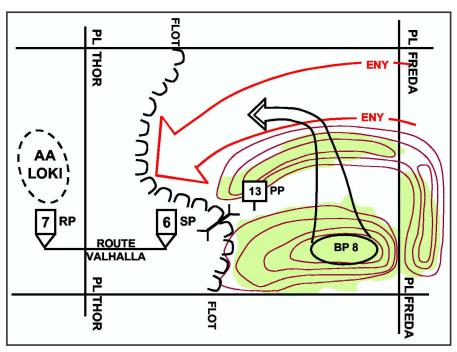


Figure 11-12. Stav-Behind Force

11-120. A light infantry, stay-behind force surprises an enemy by conducting a series of raids and ambushes. The light infantry force can be inserted via infiltration, air assault, or parachute; it can also be a bypassed force. Attacks in the enemy rear area by heavy forces can cover a larger area than attacks by light infantry forces.

11-121. Stay-behind operations eventually require the force to reenter friendly lines or link up with other elements, often in more than one location. The commander must carefully coordinate this reentry to prevent fratricide. The return routes for the stay-behind force must be the best-covered and concealed routes available. Obstacles along these routes that cannot be bypassed should have guarded lanes or gaps.

11-122. A stay-behind operation is not a suicide mission. The commander conducts this operation only when he has confidence that the stay-behind force will rejoin the main body, extract itself in alternative ways, or the main body will fight its way forward to link up with the stay-behind force.